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The earthworms Eisenia fetida and E. andrei are closely related and can hybridise under laboratory conditions,

Keywords: but it is not known if they hybridise under more natural conditions. The two species are genetically well se-
Earthworms parated, but within E. fetida there is also a deep split forming two well separated mitochondrial lineages. In the
coI present study, 69 Eisenia worms from 23 outdoor (or indoor) composts or other human affected habitats in
288 Sweden and Norway are analysed, using three molecular markers, Cytochrome C Oxidase subunit I (COI), the
Histone 3 large 28S ribosomal subunit (28S), and Histone 3 (H3). We confirmed that E. fetida and E. andrei are separate
]3 EIgAOE}?;::mg species and, in most cases, are separated by both mitochondrial and nuclear markers, and that the two lineages

of E. fetida indeed comprise a single, panmictic species despite the deep mitochondrial divergence. We did find

evidence of historical hybridisation between E. andrei and E. fetida, but only in four of the 69 specimens studied.

1. Introduction

The two closely related earthworms Eisenia fetida (Savigny, 1826
[1]) and E. andrei Bouché, 1972 [2] (family Lumbricidae) are com-
monly used as models in ecotoxicology and physiology [e.g., 3,4] as
well as for vermicomposting [e.g.,5]. The species are genetically well
separated [6-10], and differ in colouration; E. fetida is striped with pale
bands around the intersegmental furrows, whereas E. andrei is more
uniformly reddish [11]. However, Latif et al. [9] found that some E.
andrei in Iran, identified by DNA-barcoding, were striped like E. fetida,
questioning the usefulness of this character for separation of the two
species. Within E. fetida, mitochondrial markers provide evidence for
two well separated clades, suggesting further speciation [e.g., 71,
whereas in laboratory cultures and more natural European populations
of Eisenia, no such clear subdivision has been found in E. andrei
[7,8,12]. In Iran, however, there are several distinct mitochondrial
lineages within E. andrei, although the genetic distances between them
are smaller than between the two lineages of E. fetida [9].

Hybridisation between E. fetida and E. andrei has been found under
laboratory conditions [6,12], and Plytycz et al. [12] even found that
some of the hybrids were fertile, when back-crossed with non-hybrid
specimens. Dominguez et al. [13], on the other hand, failed to produce
hybrids between wild caught individuals of the two species, and it is not
known how common hybridisation is in more natural habitats.

Growth rates and cocoon production are generally higher in E. an-
drei than in E. fetida [12,14], and in mixed populations E. andrei
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dominates when food is abundant, whereas E. fetida dominates when
food is scarce [13]. In Scandinavia, E. andrei is the more common of the
two species [6; CE unpublished data].

The aims of this study are to examine possible hybridisation be-
tween E. fetida and E. andrei in Scandinavian populations and to test if
the two distinct lineages within E. fetida are separate species or not.

2. Material and methods
2.1. Specimens, DNA extraction and amplification

In total, 69 specimens of Eisenia spp. from 23 localities in Norway
and Sweden were included in the study (Table 1). As colour and stripe
patterns do not clearly separate the species [see 9], the specimens were
grouped based on their COI sequences; for details, see below.

DNA was extracted from a small piece of the body wall taken from
the posterior part of each specimen. The DNA was extracted either
using Epicentre's QuickExtract DNA Extraction Solution 1.0 or Qiagen's
DNeasyBlood & Tissue Kit. Three genetic markers, the mitochondrial
Cytochrome C Oxidase subunit I (COI), and the nuclear Large 28S
Ribosomal Subunit (28S) and Histone 3 (H3), were amplified using the
primers and programs listed in Table S1; for amplification of 28S two
alternative primer pairs were used. PCR was carried out using Red Taq
DNA Polymerase Master Mix (VWR, Haasrode, Belgium) in 25 pL re-
actions. To confirm amplification, the PCR products were run on a 1%
agarose gel, and purified using ExoTAP (Exonuclease I and FastAP
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Thermosensitive Alkaline Phosphatase) [15]. Sequencing was carried
out by Eurofins MWG Operon (Ebersberg, Germany) or Macrogen
(Geumcheon-Gu, Seoul, Korea). Sequences were assembled into con-
sensus sequences using Geneious v.8.1.9 (Biomatters Ltd., Auckland,
New Zealand). The sequences of each marker were aligned using
MAFFT v7.017 [16] as implemented in Geneious. In the H3 and 28S
datasets, several individuals showed clear signs of heterozygosity, i.e.,
distinct double peaks at certain positions in the chromatograms. Due to
this, we separated the H3, and 28S alleles using the PHASE algorithm
[17,18] as implemented in DNAsp v.5.10 [19], the phasing was run for
100 iterations after 100 initial burn-in iterations, with a thinning in-
terval of 1 using default settings. For homozygous specimens only one
of the two identical alleles was kept. The phased datasets were used in
all subsequent analyses. The alignments of the protein coding COI and
H3 were translated into amino acids and checked for stop-codons. All
sequences are deposited in GenBank; see Table 1 for accession numbers.

2.2. Distance analysis and clustering of specimens

COI is the recommended barcoding gene for the identification of
animal species [20], and was used to divide the specimens into bar-
coding clusters (=putative species). Uncorrected genetic p-distances
were calculated for the COI dataset in MEGA 6 [21]. The specimens
were divided based on the existence of a barcoding-gap, i.e., when the
COI distances within a group are clearly smaller than the distances
between this group and the closest other group. This was done by visual
inspection of the distances, as there was only one large (> 0.01) clear
gap in the dataset. In total, three groups were found, one corresponding
with E. andrei, and two within E. fetida (fetida 1, fetida 2); these clusters
were named in accordance with Rémbke et al. [8]. These groups were
used as input species in the analyses accounted for in 2.4.

2.3. Haplotype networks

To visualize haplotype diversity, haplotype networks were con-
structed for all three markers in PopART v1 [22] using statistical par-
simony [23,24].

2.4. Multi-locus species delimitation

The two nuclear markers (28S and H3) were included in a multi-
locus species delimitation analysis using BPP v.3.3 [25]. The COI da-
taset was not included as it was used to divide the dataset into groups,
and therefore matches the groups found by default. Joint Bayesian
species delimitations and species tree estimations were conducted, a
method using the multispecies coalescent model to compare different
arrangements of species delimitation and species phylogeny in a
Bayesian framework, accounting for incomplete lineage sorting due to
ancestral polymorphism and gene tree-species tree conflicts [26-28].
Three analyses (A-C) with different population size (8s) and divergence
time (t0) priors, were preformed, using the same settings and priors as
in Martinsson and Erséus [29] (A: 6 2,400, ©0 2200; B: 6 2,1000, t0
2200; C: 6 2,2000, ©0 2200). All analyses were performed three times to
confirm consistency between runs. We considered species delimited
with aPP > 0.90 in all analyses to be well supported. For clusters with
a PP < 0.90, we accepted the best-supported more inclusive species.

2.5. Testing for hybridisation

The posterior predictive checking method [30] was used to test if
the discordance between H3 and the other two markers in the place-
ment of six sequences from four of our 69 specimens (see 3.2) was
caused by hybridisation or incomplete lineage sorting (ILS). The
method compares the pairwise genetic distances to gene trees simulated
in species trees, to test the probability that the distances observed are
caused by ILS alone; i.e., if ILS can be excluded as the cause of
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discordance, hybridisation is the main source of this kind of differences
between trees. This method is implemented in the software JML [31],
and uses the posterior distribution of species trees estimated in *BEAST
[32], as implemented in the BEAST software [33,34]. Species trees were
estimated with the mismatched sequences included. The sequences
were divided into the species E. fetida and E. andrei as delimited by BPP
(see 3.3). Each marker was given its own HKY + T substitution model,
and empirical base frequencies were used. The Yule process speciation
prior, and the piecewise linear with constant root population size prior
were used, and the population size (ploidy level) of COI was set to half
of that of H3 and 28S. Strict clocks were used, the rate was estimated
for all markers, using normal distributed priors with a mean of 0.1 and
SD of 0.05 for COI, mean 0.01, SD 0.05 for 28S, and mean 0.02 and SD
0.05 for H3 for the clock rate. The length of the species tree was set to
one using a strong normally distributed prior (mean 1, SD 0.01) for the
tmrca (time to most recent common ancestor) for all taxa. For species
population mean and mean growth rate priors, an exponential dis-
tribution with mean 1 was used. For all other priors, default settings
were used. The analysis was run for 100 million generations, sampling
every 10,000 generations. Tracer v1.6 was used for examining effective
sample size (ESS) for parameters and determining burn-in.

We compared the genetic distances from 1000 gene trees, simulated
under species trees from the posterior distribution of the *BEAST ana-
lysis, with a burn-in of 10%, to the pairwise genetic distances of the H3
dataset, the mismatching specimens being placed according to their COI
and 28S sequences. We used the mean clock rate and heredity scalar for
H3 from the *BEAST analysis. The results were evaluated using a sig-
nificance level of P = 0.01. If the specimens are of hybrid origin we
expect significantly shorter distances than those to be expected by ILS
alone.

3. Results

COI was successfully sequenced for all specimens, whereas H3 could
not be obtained for one specimen, and 28S not for two. After phasing
and trimming, the alignments, respectively, consisted of 89 sequences
and were 573 bp long for 28S, 134 sequences and 328 bp for H3, and 69
sequences and 588 bp for COI. No stop codons were found in COI or H3,
and no non-synonymous substitutions were found in COI In H3, 11
sequences differed by 1-2 synonymous substitutions compared with the
most common amino acid sequence found in the other 123 sequences.
However, these substitutions were mostly autapomorphic events among
specimens within the groups, and there was no general amino acid
separation between the three main groups found in COI (see 3.1).

3.1. Distance analysis and clustering of specimens

The uncorrected p-distances in the COI dataset varied from O to
16.6% with a large barcoding gap between 2.0% and 11.4%. Based on
the barcoding-gap the sequences were divided into three clusters, one
corresponding with E. andrei, and two with E. fetida 1 and E. fetida 2
[sensu 8]. The genetic variation within clusters were low, in E. andrei
the p-distances varied from 0% to 1.8%, within E. fetida 1 from O to
2.0%, and in E. fetida 2 all sequences were identical. The p-distances
between E. andrei and E. fetida 1 varied from 13.4% to 16.6%, between
E. andrei and E. fetida 2 from 14.5% to 14.8%, and between E. fetida 1
and E. fetida 2 from 11.4% to 12.6%

3.2. Haplotype networks

In the COI network (Fig. 1A) all lineages form distinct, well sepa-
rated haplotype groups. However, in both the 28S (Fig. 1B) and H3
networks (Fig. 1C), the sequences of E. fetida 1 and E. fetida 2 are mixed,
and often share haplotypes. In the 28S network there is a clear se-
paration between E. andrei and E. fetida 1 + 2, but in H3 the division is
not as clear, and four sequences of E. andrei (two belonging to CE2873,
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Fig. 1. Statistical parsimony haplotype networks. The size of the circles is re-
lative to the number of sequences sharing that haplotype, the colours corre-
spond to mt lineages, and the hatch marks indicate substitutions. Arrow heads
indicate mismatch sequences from specimens of hybrid origin. A. COI network.
B. 28S network. C. H3 network. Note that in figures B and C, due to allelic
variation, the number of sequences is higher than the number of specimens
studied. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

and one each from CE6342 and CE6343, respectively) are found within
E. fetida, and two sequences of E. fetida 2 (both belonging to CE4785)
are found nested within E. andrei.

3.3. Multi-locus species delimitation
All species delimitation analyses support Eisenia andrei as a separate

species with maximum support, whereas the support for separating E.
fetida 1 and E. fetida 2 varies between analyses. In analysis A, the three
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species model is preferred with a mean PP of 0.88. In analysis B, the
three species model is also preferred, but with a lower mean PP of 0.72.
In analysis C, a two species model, combining E. fetida 1 and E. fetida 2
is preferred with a mean PP of 0.56. Based on the low support for se-
parating E. fetida 1 and E. fetida 2, the conclusion is that these two
groups represent a single species with two divergent mt-lineages.

3.4. Testing for hybridisation

In the JML analysis, 93 pairwise distances were found to be sig-
nificantly shorter (P < 0.01) than what could be explained by ILS
alone. All mismatched sequences are found in this set of significantly
shorter distances, supporting a hybrid origin of the specimens.

4, Discussion

As mentioned above, hybridisation between Eisenia fetida and E.
andrei under laboratory conditions has been noted before [6,12]. In the
present study of non-laboratory animals from Scandinavia, we found
evidence for limited hybridisation between the two species too, but
only four of our 69 worms bear signs of a hybrid origin. Plytycz et al.
[12] only found F1 hybrids with a maternal contribution from E. andrei,
and only four of seven intra-specific pairs produced offspring at all, and
the reproductive success was generally reduced compared to that of
intra-specific pairs, indicating the presence of reproductive barriers
between the two species. Interestingly, two of the specimens of hybrid
origin (CE6342 and CE6343) were found in copula. They were found
within E. andrei in COI and 28S, and have different COI haplotypes, but
identical 28S haplotypes, and in H3 both specimens are heterozygous,
sharing one haplotype found in E. fetida, whereas the other haplotype
differs, but is in both cases clustered with E. andrei. The identical E.
fetida H3 haplotype in these two specimens could indicate that the in-
trogression of this haplotype emanates from a single historical hy-
bridisation event.

In our study, there is no discordance between COI and 28S, but
instead a few mismatches between H3 and the other two markers. This
could be explained by the concerted evolution of the ribosomal
genome, resulting in homogenisation, and the removal of introgressed
haplotypes from the populations [35]. Although histones are known to
be prone to homogenisation too, the lower heterozygosity in 28S
compared to H3 (see the haplotype networks, Fig. 1B-C) suggests that,
in our case, this process seems to be more severe in 288S.

In Scandinavia, Eisenia andrei and E. fetida were only found in mixed
populations at two localities (see Table 1); an indoor compost in Os-
teraker, Vingdker, Sweden (CE13945-59), and rotting wood in Slattum,
Nittedal, Norway (CE16396-99). In both these cases, E. andrei seemed
to be the most abundant species, but specimens of hybrid origin were
not found in these populations.

In other terrestrial clitellates, hybridisation has also been found
between species in the Allobophora chlorotica complex [36] and the
genus Lumbricus [37] among the Lumbricidae, as well as in the en-
chytraeid genera Hemifridericia and possibly Henlea [29,38].

At one of the Norwegian sites sampled, an outdoor compost in
Sudndalen (Hol, Buskerud), at 875 m above sea level, specimens of E.
fetida 1 and E. fetida 2 were found together (see Table 1: CE13211-14,
CE19158-60). However, we did not find support for splitting E. fetida
into two species in any part of our material; haplotypes of both nuclear
genes (28S, H3) were mixed in both fetida 1 and fetida 2 (Fig. 1B-C).
Instead it seems that E. fetida is just another case of deep intraspecific
mt-divergence (between blue and green circles in Fig. 1A), something
reported for other earthworm species too [37,39,40]. Pérez-Losada
et al. [7], who studied only a limited number of specimens, found that
E. fetida from Ireland (=E. fetida 1) was separated from Spanish po-
pulations (=E. fetida 2) in both COI and 28S. However, their Spanish
28S haplotype matches one of our haplotypes, and their Irish haplotype
is intermediate between the two E. fetida haplotypes in our study. Pérez-
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Losada et al.’s suggestion of the Irish and Spanish E. fetida possibly
being two different species was logical, given the data at the time, but
the contradictory conclusion of our study highlights the importance of a
sufficient sample size in species delimitation analysis, if possible in-
cluding also different variants from sympatric populations.

Despite the hybridisation between E. fetida and E. andrei, the two are
still well separated species, and no signs of break-down of the species
boundaries were noted in the present study. This is in strong contrast
with the two mt-lineages of E. fetida, which are completely mixed in the
nuclear markers, despite that these lineages are almost as well sepa-
rated in COI as any of them and E. andrei.
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